Семинарское занятие 6 (MATLAB)
Тема: Регуляризация в линейной модели (логистическая регрессия), learning curves.
Цель занятия
1) Обучить линейную модель для классификации (логистическая регрессия).
2) Показать влияние регуляризации (ridge/L2 и lasso/L1) на качество.
3) Подобрать силу регуляризации по cross-validation.
4) Построить learning curves и интерпретировать переобучение/недообучение.
Входные данные
Рекомендуется бинарный датасет (2 класса). Варианты:
A) cancer_dataset (если доступен).
B) Любой CSV с метками 0/1 (например OK/Defect).

Важно: признаки должны быть числовыми. Нормализация выполняется ТОЛЬКО по train (без утечки).
Задание
1. Загрузить данные (X, y). y привести к двум классам (0/1).
2. Сделать train/validation/test split (60/20/20) со стратификацией и фиксированным seed.
3. Выполнить z-score нормализацию по train, применить те же параметры к val/test.
4. Обучить логистическую регрессию без регуляризации (или с очень слабой) и оценить на val/test.
5. Обучить логистическую регрессию с L2 (ridge) для набора λ и выбрать лучшую λ по 5-fold CV на train.
6. Обучить логистическую регрессию с L1 (lasso) для набора λ и выбрать лучшую λ по 5-fold CV на train.
7. Сравнить модели: без регуляризации vs ridge vs lasso (accuracy, F1, ROC-AUC).
8. Построить learning curves: качество train и val в зависимости от размера train (например 10%…100%).
9. Сделать выводы: признаки переобучения/недообучения и влияние регуляризации.
Что сдавать
1) MATLAB-скрипт: Seminar6_Regularization_LearningCurves.m
2) Отчёт 1–2 страницы: график CV vs λ, ROC на test, learning curves, таблица метрик, вывод.
3) (Опционально) .mat с лучшими моделями и параметрами.
Критерии оценивания (макс. 15 баллов)
• Корректный split + нормализация без утечки — 4 б.
• Ridge/L2: подбор λ по CV — 3 б.
• Lasso/L1: подбор λ по CV — 3 б.
• Learning curves + интерпретация — 3 б.
• Сравнение моделей + вывод — 2 б.
Бонус +2 б: правило 1-SE (выбор более простой λ) и анализ разреженности коэффициентов (сколько весов ≈0).
Шаблон кода MATLAB (копируйте и запускайте)
%% Seminar 6: Regularization in Logistic Regression + Learning Curves
rng(42);

%% 1) Данные (пример: cancer_dataset)
try
    load cancer_dataset          % X: 9x699, T: 2x699
    X = X';                      % 699x9
    y = T(2,:)';                 % positive class (1)
    y = double(y);               % 0/1
catch
    % Свой датасет:
    % T = readtable("data.csv");
    % y = double(categorical(T.Label) == categorical("Defect")); % пример
    % X = table2array(T(:, setdiff(T.Properties.VariableNames, {'Label'})));
    error("Подключите свой CSV в блоке catch.");
end

yCat = categorical(y);

%% 2) Split: Train/Val/Test = 60/20/20 (стратификация)
cv1 = cvpartition(yCat,'Holdout',0.4);
idxTr = training(cv1);
idxTmp = test(cv1);

Xtr = X(idxTr,:);  ytr = y(idxTr);  ytrCat = yCat(idxTr);
Xtmp = X(idxTmp,:); ytmp = y(idxTmp); ytmpCat = yCat(idxTmp);

cv2 = cvpartition(ytmpCat,'Holdout',0.5);
idxVal = training(cv2);
idxTe  = test(cv2);

Xval = Xtmp(idxVal,:);  yval = ytmp(idxVal);  yvalCat = ytmpCat(idxVal);
Xte  = Xtmp(idxTe,:);   yte  = ytmp(idxTe);   yteCat  = ytmpCat(idxTe);

%% 3) Нормализация (z-score) по TRAIN
mu = mean(Xtr,1);
sigma = std(Xtr,0,1); sigma(sigma==0)=1;

XtrN  = (Xtr  - mu) ./ sigma;
XvalN = (Xval - mu) ./ sigma;
XteN  = (Xte  - mu) ./ sigma;

%% 4) Logistic Regression (baseline) — слабая регуляризация (почти 0)
mdlBase = fitclinear(XtrN, ytrCat, 'Learner','logistic', 'Regularization','ridge', 'Lambda',1e-8);
[yhatBase, scoreBase] = predict(mdlBase, XteN);
scoreBase = getPosScore(mdlBase, scoreBase);

%% 5) Ridge (L2): подбор Lambda по 5-fold CV на TRAIN
lambdaGrid = logspace(-6, 2, 15);   % от 1e-6 до 1e2
cvLossL2 = zeros(size(lambdaGrid));

for i = 1:numel(lambdaGrid)
    mdl = fitclinear(XtrN, ytrCat, 'Learner','logistic', ...
        'Regularization','ridge', 'Lambda', lambdaGrid(i));
    cvMdl = crossval(mdl, 'KFold', 5);
    cvLossL2(i) = kfoldLoss(cvMdl);   % 0-1 loss
end

[~, bestIdx] = min(cvLossL2);
bestLambdaL2 = lambdaGrid(bestIdx);
fprintf('Best Lambda (Ridge/L2) = %.3g | CV loss=%.3f\n', bestLambdaL2, cvLossL2(bestIdx));

figure; semilogx(lambdaGrid, cvLossL2, '-o'); grid on;
xlabel('Lambda'); ylabel('5-fold CV Loss'); title('Ridge (L2): CV Loss vs Lambda');

mdlL2 = fitclinear(XtrN, ytrCat, 'Learner','logistic', 'Regularization','ridge', 'Lambda', bestLambdaL2);
[yhatL2, scoreL2] = predict(mdlL2, XteN);
scoreL2 = getPosScore(mdlL2, scoreL2);

%% 6) Lasso (L1): подбор Lambda по 5-fold CV на TRAIN
cvLossL1 = zeros(size(lambdaGrid));
nzCount = zeros(size(lambdaGrid));  % сколько ненулевых коэффициентов

for i = 1:numel(lambdaGrid)
    mdl = fitclinear(XtrN, ytrCat, 'Learner','logistic', ...
        'Regularization','lasso', 'Lambda', lambdaGrid(i));
    cvMdl = crossval(mdl, 'KFold', 5);
    cvLossL1(i) = kfoldLoss(cvMdl);
    nzCount(i) = sum(abs(mdl.Beta) > 1e-8);
end

[~, bestIdx] = min(cvLossL1);
bestLambdaL1 = lambdaGrid(bestIdx);
fprintf('Best Lambda (Lasso/L1) = %.3g | CV loss=%.3f | nonzero=%d\n', bestLambdaL1, cvLossL1(bestIdx), nzCount(bestIdx));

figure; semilogx(lambdaGrid, cvLossL1, '-o'); grid on;
xlabel('Lambda'); ylabel('5-fold CV Loss'); title('Lasso (L1): CV Loss vs Lambda');

figure; semilogx(lambdaGrid, nzCount, '-o'); grid on;
xlabel('Lambda'); ylabel('#Nonzero Weights'); title('Lasso: Sparsity vs Lambda');

mdlL1 = fitclinear(XtrN, ytrCat, 'Learner','logistic', 'Regularization','lasso', 'Lambda', bestLambdaL1);
[yhatL1, scoreL1] = predict(mdlL1, XteN);
scoreL1 = getPosScore(mdlL1, scoreL1);

%% 7) Метрики + ROC-AUC (test)
fprintf('\n=== TEST METRICS ===\n');
reportModel("Baseline", yte, yteCat, yhatBase, scoreBase);
reportModel("Ridge L2", yte, yteCat, yhatL2,   scoreL2);
reportModel("Lasso L1", yte, yteCat, yhatL1,   scoreL1);

%% 8) Learning Curves (train vs val) для Ridge L2 (как пример)
fractions = linspace(0.1, 1.0, 10);
accTrain = zeros(size(fractions));
accVal   = zeros(size(fractions));

for i = 1:numel(fractions)
    frac = fractions(i);
    nUse = max(10, round(frac * size(XtrN,1)));
    idx = randperm(size(XtrN,1), nUse);
    
    mdlTmp = fitclinear(XtrN(idx,:), ytrCat(idx), 'Learner','logistic', ...
        'Regularization','ridge', 'Lambda', bestLambdaL2);
    
    yhatTr = predict(mdlTmp, XtrN(idx,:));
    yhatVa = predict(mdlTmp, XvalN);
    
    accTrain(i) = mean(yhatTr == ytrCat(idx));
    accVal(i)   = mean(yhatVa == yvalCat);
end

figure; plot(fractions*100, accTrain, '-o', fractions*100, accVal, '-o'); grid on;
xlabel('Train size (%)'); ylabel('Accuracy');
title('Learning Curves (Ridge L2): Train vs Validation');
legend('Train','Validation','Location','southeast');

%% ===== ФУНКЦИИ =====
function s = getPosScore(mdl, score)
% Возвращает score вероятности/оценки для positive класса (1) из predict
posClass = categorical(1);
if size(score,2) == 2
    posIdx = find(mdl.ClassNames == posClass);
    s = score(:, posIdx);
else
    s = score(:);
end
end

function reportModel(name, yNum, yCat, yhatCat, scorePos)
CM = confusionmat(yCat, yhatCat, 'Order', [categorical(0) categorical(1)]);
TN = CM(1,1); FP = CM(1,2);
FN = CM(2,1); TP = CM(2,2);

acc  = (TP+TN)/max(sum(CM(:)),1);
prec = TP/max(TP+FP,1);
rec  = TP/max(TP+FN,1);
f1   = 2*prec*rec/max(prec+rec,1e-12);

[~,~,~,AUC] = perfcurve(yNum, scorePos, 1);

fprintf('%s | Acc=%.3f Prec=%.3f Rec=%.3f F1=%.3f AUC=%.3f\n', name, acc, prec, rec, f1, AUC);

figure; confusionchart(yCat, yhatCat); title([name ' : Confusion Matrix (Test)']);
figure; [Xroc,Yroc,~,~] = perfcurve(yNum, scorePos, 1);
plot(Xroc,Yroc); grid on; xlabel('FPR'); ylabel('TPR'); title(sprintf('%s : ROC (AUC=%.3f)', name, AUC));
end

Примечания
• Если у вас многоклассовая задача, fitclinear поддерживает one-vs-all (ECOC). Здесь показан бинарный случай для ROC-AUC.
• Learning curves: если train высокое, а val низкое — переобучение (variance). Если оба низкие — недообучение (bias).
• Для честной оценки нельзя подбирать λ по test. Подбор делайте по CV/validation.
